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Abstract—This paper considers the flow and heat transfer in a square cavity where the flow is induced by
a shear force resulting from the motion of the upper lid combined with buoyancy force due to bottom
heating. The work is motivated by the application in the production of plane glass where the glass sheet
is pulled over a bath of molten metal while being cooled and solidified. The numerical simulations,
therefore, are performed for two-dimensional laminar flow (100 < Re < 2200), and effects of small to
moderate Prandtl numbers (i.e. 0.01 < Pr < 50) on the flow and the heat transfer in the cavity are
investigated for different values of Richardson number. The temperature and the flow fields in the cavity
are calculated and presented to illustrate the strong influence of Prandtl number. The local and average
Nusselt numbers are also reported for different values of Re, Ri, and Pr.
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1. INTRODUCTION

MIxED-CONVECTION flow and heat transfer occur fre-
quently in engineering and natural situations. One
important configuration is a lid-driven (or shear-
driven) flow in a differentially heated/cooled cavity,
which has applications in crystal growth, flow and
heat transfer in solar ponds [1], dynamics of lakes [2],
and thermal-hydraulics of nuclear reactors [3]. Flow
in cavities driven by a combined shear and buoyancy
force also arises in industrial processes such as food
processing, and float glass production [4].

The lid-driven cavity flow has served over and over
again as a standard test case for the evaluation of
numerical solution procedures for the Navier—Stokes
equations [5-10]. In these works, however, the effects
of buoyancy were not addressed since isothermal
cavity flows were studied [5-8], or the boundary con-
ditions represented thermally stable (i.e. stratified)
situations [9-10]. Flow in thermally stratified and iso-
thermal lid-driven cavities has been the subject of
extensive investigations at the Environmental Fluid
Mechanics Laboratory at Stanford University (e.g.
Koseffer al. [11], Koseff and Street {12, 13] and Freitas
and Street [14]). Through flow visualization, velocity
measurements, and numerical simulations, recir-
culation flow patterns were characterized over a wide
range of Re and Gr. These revealed that three-dimen-
sional features, such as corner eddies near the end
walls, and Taylor—Gortler-like longitudinal vortices,
have significant influences on the flow for Reynolds
numbers as low as 3200. These works emphasized the
fluid mechanics aspects of the problem and did not
deal with the heat transfer issues vigorously [11, 12].

Torrance et al. [15} numerically investigated both
thermally stable and unstable shear-driven flows
(—10° < Gr < +10°% in cavities with depthwise

aspect ratios of 0.5, 1 and 2. These simulations were
performed for fixed values of Re = 100 and Pr =1,
with the three cavity walls at a constant temperature
different from the temperature of the top driving lid.
Their results indicated that the Richardson number
(Ri = Gr/Re*) was a governing parameter of the prob-
lem. They particularly concluded that the flow pattern
in the cavity was influenced by the buoyancy if the
absolute value of Ri was greater than unity. However,
the effects of buoyancy on the heat transfer rate in the
cavity were not characterized quantitatively.

Mixed convection heat transfer in a lid-driven
cavity was recently investigated by Prasad and Koseff
[16]. In a series of experiments which were performed
on a cavity filled with water, the heat flux was mea-
sured at different locations over the hot cavity floor
for a range of Re and Gr. Their resuits indicated that
the overall (i.e. area-averaged) heat transfer rate was a
very weak function of Gr for the range of Re examined
(2200 < Re < 12000). The data were correlated by
Nusselt number vs Reynolds number, as well as Stan-
ton number vs Reynolds number relations. The point
that heat transfer is independent of buoyancy is rather
surprising considering the range of Gr examined, i.e.
107 < Gr < 5% 10°. It is among the objectives of this
work to provide an explanation for this point.

In some mixed convection literature [15-17] Rich-
ardson number has been reported to be the indicator
of the relative importance of buoyancy induced flow.
This observation is based on analyses and experiments
on fluids with Prandtl numbers of order of unity, and
cannot be treated as a universal rule. In fact, through
a scale analysis of mixed convection flow over a ver-
tical wall, Bejan [18] showed that the criterion for the
transition from forced convection dominant flow to
natural convection dominant flow was not the same
for Pr > 1 and Pr < 1 fluids. The transition criterion

1881



1882

M. K. MoaLLeMI and K. S. JANG

gravitational acceleration [m s~2]

r  Grashof number, gB(Ty— Tc)L?/v?
heat transfer coefficient [W m~2 K]
thermal conductivity [Wm~' K1
cavity depth and width [m]

Nu  Nusselt number, dimensionless heat

transfer coefficient, — 0@/3Y = hL/k

P pressure [N m~?]

P dimensionless pressure, p/pU?

Pr Prandtl number, v/a

Re Reynolds number, U, L/v

Ri Richardson number, Gr/Re?

T temperature [K]

(u, v) horizontal and vertical velocity

components [m s~ ']

(U, V) dimensionless velocity components,

(u, )/ UL

N~ e

NOMENCLATURE
A aspect ratio, and constant for equation U, lid velocity [ms™ ']
(12) (x, y) horizontal and vertical coordinates [m]
B constant for equation (12) (X, Y) dimensionless coordinates, (x, y)/L.

Greek symbols

o thermal diffusivity [m? s~ ]

B coeflicient of thermal expansion
[K™']

(C] dimensionless temperature,
(T—=T)(Tu—Tc)

v kinematic viscosity [m? s~ '].

Subscripts

C cold

F forced convection

H hot

L lid

N natural convection.

is not yet validated for Pr « 1 fluids, due to the non-
existence of experimental data for this range of Pr.
Recently, however, Mohamad and Viskanta [19]
reported on the effects of Pr on the onset of instability
in a shallow lid-driven cavity heated from below.
Through a linear stability analysis, they found that Pr
influenced the conditions for the initiation of the
mixed convection regime.

This paper considers the flow and heat transfer in
a square cavity where flow is induced by a shear force
resulting from the motion of the upper lid combined
with the buoyancy force due to bottom heating. The
work is motivated by the application in the production
of plane glass where a glass sheet is pulled over a bath
of molten metal while being cooled to solidify. The
numerical simulations, therefore, are performed for
two-dimensional laminar flows. The effects of small
to moderate Prandtl numbers (i.e. 0.01 < Pr < 50) on
the flow and heat transfer in the cavity are investigated
for different values of Reynolds and Richardson num-
bers. The temperature and flow fields in the cavity are
presented to illustrate the strong influence of Prandtl
number. The effects of Pr on the variation of the heat
transfer distribution over the cavity floor, and the
driving lid are discussed, and correlations for the aver-
age Nusselt number are reported.

2. PROBLEM FORMULATION

Fluid flow and heat transfer are modeled in a two-
dimensional square cavity of width L in which the top
(lid) surface moves across the cavity from left to right
at a constant speed U, , as shown in Fig. 1. The two

vertical walls of the cavity are insulated, and the lid
and bottom surfaces are maintained at constant tem-
peratures, T and Ty, respectively, with Tc < Ty;. The
flow is assumed to be laminar, and the fluid properties
are constant except for the density in the buoyancy
term (the Boussinesq approximation).

The governing equations of the problem are
expressions of conservation of mass, momentum, and
thermal energy. Using L, Uy , and (T, — T¢) as length,
velocity, and temperature scales, the governing equa-
tions are non-dimensionalized to yield
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U=U,,V=01T¢
or_, e or
8z Bz
U=V =0 U=V =0
Vi
y U
U=V =0,Ty
FiG. 1. Schematic diagram of the cavity and boundary
conditions.
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The governing parameters of the problem are Reyn-
olds, Grashof, and Prandtl numbers which are defined
in the Nomenclature. The coupling between the heat
transfer and the fluid flow in the cavity is through the
buoyancy term in the y-momentum equation, equa-
tion (3), which has Gr/Re’ = Ri as a dimensionless
coefficient.

The velocity and temperature boundary conditions
are shown in Fig. 1 and have the following dimen-
sionless forms:
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3. METHOD OF SOLUTION

The dimensionless governing equations are dis-
cretized using the control volume approach with the
power-law scheme [20] for the calculations of the
fluxes at the faces of the control volumes. The
SIMPLER algorithm {20} is used with the inertia
relaxation method of ref. [3] to accelerate conver-
gence. To resolve the large velocity and temperature
gradients in the boundary layers near the cavity walls,
a nonuniform grid system was used in both X- and Y-
directions. The position of the control surfaces of the
grid system were determined with an exponentially
clustering scheme. A series of grid sensitivity runs
were performed on nonuniform grids ranging from
22 x22 to 52x 52, which suggested that grid inde-
pendent results could be achieved using a 42 x 42 grid.
The results of two nonuniform grids of 42 x42 ana
52x 52 for Re=1000, Gr=10% and Pr=0.1
revealed differences less than 1% in the streamlines
and isotherms. The solution procedure is iterative and
requires initial guesses for all the dependent variables.
To facilitate the convergence of the solution for a
given set of parameters, the converged solution of a
case with smaller Ri or Re was used as the initial
guess. Sensitivity tests have indicated that the final
results were independent of the initial guess.

For any set of input parameters, the solution was
considered converged if

|l/’k+l(i’ .])—l//k(l’ j)'

-3
Max [PF G, )| 0

N
and ‘1.0—£
Nuy

<1073% (6)
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where i and j refer to the computational nodes, k is
the iteration loop counter, ¥ is «, v, or T, and Nuy
and Nuc are area-averaged Nusselt numbers on the
lid and bottom surfaces, respectively. When the above
criteria were satisfied, the residual source of mass was
less than 10~ 7 for all the cases examined. The con-
vergence of the local heat transfer rate over the bottom
surface, as judged by the position and magnitude of
its relative maximum, was within 0.5% when the cri-
teria of equation (6) were satisfied. Depending on
the input parameters, 1000 to 1800 iterations were
required for the solution to converge, with cases with
lower Ri or higher Pr requiring a fewer number of
iterations.

The numerical procedure was validated by per-
forming simulations of isothermal flow in a square
cavity with a driving lid for Re = 400 and 1000. The
results of these simulations were compared with the
calculations of Schreiber and Keller [7], and Thomp-
son and Ferziger {8]. These comparisons revealed bet-
ter than 95% agreement in the strength and position
of the primary {7, 8] and secondary [7] eddies. The
solution procedure was also validated by comparing
the predicted heat transfer rates with the experimental
results of Prasad and Koseff [16]). The predicted area-
averaged heat transfer rates agreed to within 5% of
the experimental data for Pr = 6.0, Re = 2200, and
Gr=10" and 4 x 107,

4. RESULTS AND DISCUSSIONS

The main objective of this investigation was to
study the effects of Pr on the flow and heat transfer
in a square cavity driven by a combined shear and
buoyancy force. Forty-six numerical simulations were
performed for a range of Pr,ie. Pr=0.01, 0.1, 6.0,
7.1, and 50. With four values for Re (i.e. Re = 100,
500, 1000, and 2200), and four values of Gr (i.e.
Gr = 10%, 10°, 10°, and 107), these simulations
covered a range of Ri from 0.01 to 10.

The predicted flow and temperature fields for
Re = 1000, and Gr = 10* (i.e. constant value of
Ri = 0.01), and for three different values of Pr are
shown in Fig. 2. The flow fields for all the three cases
are essentially established by the shear induced by the
moving lid. This may be examined by recalling the
general features of the lid-driven cavity flow in the
absence of buoyancy. The fluid flow in a two-dimen-
sional lid-driven cavity is characterized by (a) a pri-
mary recirculating eddy of the size of the cavity gen-
erated by the lid dragging the adjacent fluid; (b) a
secondary eddy formed in the apex of the vertical wall
and the bottom surface (referred to as the downstream
secondary eddy, DSE) as a result of frictional losses
and stagnation pressure ; (c) another secondary eddy
(referred to as the upstream secondary eddy, USE)
formed in the upstream lower corner due to the nega-
tive pressure gradient generated by the primary cir-
culating fluid as it deflects upward over the upstream
vertical wall; and (d) a third secondary eddy which
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Re=1000, Ri=0.01, Pr=7.1
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Fi1G. 2. Effect of Pr on the flow temperature fields in the cavity, for Re = 1000 and Gr = 10*.

may develop on the vertical wall near the lid, for
Re > 1000, as the lid draws fluid from the corner into
the lid boundary layer [11-13). All these features are
present in the flow fields shown in Fig. 2, regardless

of the value of Pr. Moreover, the size, position, and
strength of the secondary eddies are almost identical
for the three cases presented in this figure. These con-
firm the established notion that for Ri « 1, the flow
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in the cavity is defined by the shear action of the
moving lid [15], and thus, is independent of Pr which
defines the temperature and buoyancy variations in
the cavity.

The temperature distributions in the cavity, shown
on the right side of Fig. 2, exhibit strong dependence
on Pr. These indicate that the thermal boundary layers
over the bottom and the lid surfaces thicken as Pr is
reduced. The large isothermal region which extends
over most of the cavity for Pr = 7.1, shrinks with
decreasing Pr, and disappears for Pr<0.l. The
strong dependence of the temperature distribution on
Pr does not reflect on the flow pattern in the cavity
which again demonstrates the insignificant con-
tribution of buoyancy in the flow development for
Ri« 1.

Figure 3 presents the flow and temperature fields
calculated for Re = 500, Gr=10° (i.e. constant
value of Ri = 0.4), and for Pr = 7.1,1.0, and 0.1. The
flow fields of this figure indicate to a more significant
contribution of buoyancy in defining the flow pattern
in the cavity, as compared with the flow fields of Fig.
2. The upstream secondary eddies have vanished, and
the downstream secondary eddies have changed size.
On the upstream wall, buoyancy assists the core flow
to make a sharp turn, and thus, the secondary eddy at
the upstream corner disappears. On the downstream
wall, however, buoyancy is opposing the core flow
and causes the downcoming boundary layer to detach
from the wall at a larger Y, resulting in a larger eddy.
The effects of Pr on the temperature distribution in
the cavity in this figure are similar to those of Fig. 2,
i.e. large isothermal core region for large Pr, and very
thick thermal boundary layers for small Pr. For the
cases of Fig. 3, however, a change in Pr results in a
change in the flow pattern in the cavity, confirming
the important role of buoyancy in defining the flow
field in the cavity. For large values of Pr, since the
core is isothermal, the influence of buoyancy is limited
to the boundary layers, and appears in the form of
reduction in the size or position of the secondary
eddies. For small values of Pr, the effects of buoyancy
manifest in the boundary layers, and also in the core
of the cavity. Therefore, a reduction in Pr will result
in a stronger primary eddy while affecting the sizes
and positions of the secondary eddies, as well.

The flow and temperature fields in the cavity for
Re = 1000 and Gr = 10° are presented in Fig. 4. This
figure shows that for Ri = 1.0 the fluid flow in the
cavity is established by a relatively balanced inter-
action of the two driving mechanisms involved, with
a strong dependence on Pr. For Pr equal to unity, the
balance of the shear and buoyancy effects is mani-
fested in the formation of two eddies of almost equal
size. The upper eddy is driven by the moving lid, and
encapsulates an isothermal core. This is in fact the
primary eddy which is deformed due to the opposing
action of the buoyancy. The eddy in the lower half of
the cavity is driven by buoyancy, and is the enlarged
form of the DSE. For Pr greater than unity, the
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heat transfer is mostly via convection in the boundary
layers, the core of the cavity is isothermal, and the
buoyancy effects are only significant near the cavity
wall. And these together result in the enlargement of
the DSE, and the elimination of the USE. For
Pr « 1.0, the heat transfer in the cavity is mostly due
to conduction, resulting in a rather gradual variation
of temperature in the cavity, and therefore, a small
buoyancy field. In the bottom flow field in Fig. 4, the
presence of USE and upper secondary eddies in the
cavity is the result of weak buoyancy or, in other
words, strong shear-induced recirculation.

The flow and temperature fields for Ri=4
(Re = 500 and Gr = 10%) illustrate similar effects and
interactions, as shown in Fig. 5. Comparing the flow
fields in Figs. 4 and 5 shows the influence of a change
in shear at constant Gr for different values of Pr. In
the top rows (Pr = 7.1), a decrease in Re results in
significant change in the flow structure, ie. the
enlargement of the DSE. Whereas, for Pr=0.1, a
decrease in Re causes a change in the strength of the
primary eddy, with little effect on the secondary eddies
or the temperature field. The influence of a change in
buoyancy on flow and heat transfer in the cavity at
constant lid shear may be revealed in a comparison
of Figs. 3 and 5. For large values of the Prandti
number, i.e. Pr> 1.0, an increase in Gr results in
significant change in the secondary eddies, as well as
the primary eddy. This is due to the fact that for this
range of Pr, the flow in the cavity is boundary layer
type. For Pr < 1.0, however, the cavity flow is more
of a core flow type, and an increase in buoyancy results
in a stronger primary eddy and this manifests in the
formation of an upper secondary eddy on the vertical
wall near the lid, and the resurgence of the USE.

The variations of local Nusselt number over the lid
and bottom surfaces for different values of Re, Gr,
and Pr are presented in Figs. 6-10. Over the cold lid
surface, the heat transfer rate generally drops in the
direction of the lid motion due to the formation and
growth of the boundary layer over this surface. Over
the bottom hot surface, however, the variation of the
local heat transfer rates is more complex, and exhibits
local maxima and minima which are defined by the
action of the primary and secondary eddies on this
surface. The local Nuy has a relative maximum at a
point that cold fluid impinges on the cavity floor. The
drop in the heat transfer subsequent to an impinge-
ment point is due to the formation and growth of
boundary layers over the cavity floor. The points of
relative minimum Nu,; correspond to the points of
detachment of these boundary layers from the cavity
floor. These may be examined by referring to the cor-
responding flow fields presented in Figs. 2-5.

In Figs. 6 and 7, for which Ri < 1, the local and
area-averaged heat transfer rates over the lid as well
as the floor surfaces increase with an increase in Pr. This
trend is consistent over both surfaces since neither the
dashed lines nor the solid lines cross each other. For
these cases, it may be concluded that the heat transfer
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FiG. 3. Effect of Pr on the flow and temperature fields in the cavity, for Re = 500 and Gr = 10°.

in the cavity is defined by the shear flow that dictates
the primary recirculation in the cavity, since the form
of variation of Nu. along the lid does not change with
Pr. The effect of buoyancy on the local heat transfer
rate from the cavity floor is recognized to be minimal,

as the positions of maximum and minimum heat
transfer rates do not noticeably change with a change
in Pr. The small change in the local variation of Nuy
with Pris due to the weak influence of buoyancy on
the secondary eddies.
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In Figs. 8 and 9 (Ri > 1), the variations of Nuy and
Nuc illustrate stronger dependence on Pr, indicating
a more significant contribution of buoyancy to
heat transfer and fluid flow in the cavity. For Nuy
variations, the points of maxima and minima again
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correspond to the points of cold flow impingement on
the floor, and points of boundary layer detachment
from the floor, respectively. In these figures, the effects
of Pr on Nuy and Nuc may be noted to be both
quantitative (i.e. mostly higher heat transfer rates for
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larger values of Pr) and qualitative (i.e. changes in the
positions of maximum and minimum Ny, with a
change in Pr). In either sense, however, the influence
is more pronounced for larger Pr. This confirms the
earlier observations that for Ri > 1.0 the buoyancy
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effects are felt by both the primary and the secondary
eddies, particularly for cases with Pr > 1.0.

The influence of Pr on the variation of the area-
averaged heat transfer rate with Ri, for different values
of Re, is presented in Fig. 10. The experimental results
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lines), and the lid (dash lines), Re = 1000 and Gr = 10°
(Ri = 1.0).

of Prasad and Koseff [16], for water (Pr = 6.0) at
Re = 2200 are also shown in the figure, which com-
pare well with the results of simulations performed
for the same set of parameters. The figure indicates a
rapid drop of convective heat transfer in the cavity
with a decrease in Pr. This drop which is also a func-
tion of Re brings the Nu to 1.03 for Pr = 0.01 and
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F1G. 9. Variations of the local Nu over the cavity floor
(solid lines), and the lid (dash lines), Re = 500 and Gr = 10
(Ri = 4.0).

F1G. 10. Effect of Pr on the variation of averaged Nu with
Ri.

Re = 500, only 3% above the conduction limit of
unity. The results also illustrate that up to a minimum
level of buoyancy, the heat transfer rate in the cavity
is essentially via forced convection and independent
of Ri. The departure from the forced convection heat
transfer mechanism to a mixed convection one, for
which Nu = f(Re, Ri), is noted to be a function of Pr.

Prasad and Koseff [16] have correlated their exper-
imental results as

]-V;CX:A]'I ReO.IS Ri—0-02 (7)

where A is the depthwise aspect-ratio of the cavity.
This correlation should be quite useful for design
applications, as it has a simple form and spans four
decades of Ri (i.e. 0.1 < Ri < 1000). It does not,
however, provide any clues to the interaction of the
two heat transfer mechanisms involved. Moreover,
the experimental conditions of ref. [16] correspond to
2200 < Re £ 12000 and 107 < Gr < 5% 10°, which
include laminar and turbulent regimes for both the
forced and natural convection mechanisms. The cast-
ing of the data for the two flow regimes into one
correlation had resulted in a very weak dependence of
the heat transfer rate on buoyancy, which may be
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justified for turbulent flows but is an anomaly for
laminar flows.

It has now become a common practice in mixed
convection literature [21] to correlate heat transfer
results by an expression of the form

Nu" = Nup £ Nuj, ®)

where subscripts F and N refer to pure forced and
natural convection, respectively. The value of the
exponent n and the sign between the two terms on the
right-hand side of the equation depend on the flow
configuration and geometry. The correlations for the
average Nusselt numbers Nuy and Nuy, are determined
with clues from the existing correlations for similar
geometries. Equation (8) yields the correct form of
dependence on the governing parameters of the prob-
lem in the two limiting cases (i.e. forced convection as
Gr — 0, and natural convection as Re — 0), a charac-
teristic that equation (7) does not have.

To identify a correct form for the heat transfer
correlation, an expression similar to equation (8) is
sought. The Nusselt number is first scaled by Re®®,
as suggested by correlations for laminar forced con-
vective flow over flat plates [22]. Figure 11 indicates
that this scaling is appropriate as curves for different
values of Re collapse on one another, for the entire
range of Ri examined. The heat transfer results for
Pr = 0.01 and Re = 500 do not follow a trend similar
to the other curves in the figure, and will not be con-
sidered for finding the correlation. This is justified by
the fact that the heat transfer for this set of conditions
is mostly via conduction (i.e. Nu = 1.03). In finding
the form of dependence of Nu; on Pr, two ranges are
considered, namely, Pr < 1 and Pr > 1. Least-squares
fits of the data at Ri = 0.01, which may be regarded
as pure forced convection, provide the following
relations

—_ Prt for Prel
Noup o {I’r"'3 ¢ for Pr>1" ©)
10 T - T
. Exp.[15]
- Re = 2200

1000
----- 500

Nu/Re®®

0.0t ud ral s
0.01 a1 ]i 1 10

Fi. 11. Variation of averaged Nu scaled by Re®*® with Ri
for different values of Pr.
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These are in agreement with the results for heat trans-
fer over a flat plate which are proportional to Pr'/?
and Pr'/® for Pr < 1 and Pr > 1, respectively {22].

To find the correct form of variation of Nu with Ri
and Pr for the mixed and natural convection regimes,
it is first noted that Ri is not the correct scaling par-
ameter for both Pr > 1 and Pr < | conditions, as the
curves for Pr < 1 in Fig. 11 have knees at around R/
equal to unity, while other curves in the figure seem
to have departures from pure forced convection mech-
anism at values of Ri greater than unity. This is in
agreement with the scaling analysis of Bejan [18] for
mixed convection heat transfer over a vertical wal,
which suggests use of different scaling criteria for tran-
sition from forced convection to natural convection
regimes. These criteria are

for Pr < 1 fluids

<O(1) forced convection
Ri'* . (10)
>0(1) natural convection
and for Pr > 1 fluids
Ri \/* (<0O(1) forced convection
Pri3 >Q(1) natural convection 1)

Figure 12 presents the variation of Nu scaled with
Re®*x Pr™ against the scaling parameters of equations
(10) and (11), depending on the range of Pr. The
exponent m also depends on the range of Pr as given
by equation (9). This figure indicates the proper
scaling of both the abscissa and ordinate, and shows
the correct forced convection and natural convection
limits for both ranges of Pr. The Nu variations in the
natural convection limit seem to be proportional to
the abscissa parameter raised to the 0.20 power, rather
than the 1/4th power suggested by criteria of equa-
tions (10) and (11). From this figure it may be con-
cluded that the overall effect of buoyancy in the cavity
is to assist the heat transfer, and no opposing effects

1 T T

n=0 forPret
i3 forPrad

m=040 for Prei
0.36 for Pr>1

d3Prm)

Nuf(R

o1 et setnsih scviod :
0.01 o1 Rvprﬂ 1 10

F1G. 12. Variation of heat transfer in the cavity as a function
of Re, Ri, and Pr {(symbols are the same as those of Fig. 11).




Laminar mixed convection heat transfer

appears to be present for the range of parameters
examined.

5. CONCLUSIONS

The flow and heat transfer is investigated in a bot-
tom heated lid-driven square cavity flow. The effects
of Prandtl number on the flow structure and heat
transfer in the cavity are studied for laminar ranges of
Re and Gr. The influence of buoyancy on the flow
and heat transfer in the cavity is found to be more
pronounced for higher values of Pr, if Re and Gr
are kept constant. The natural convection effects are
always assisting the forced convection heat transfer,
and the extent of the contribution is a function of Pr
and Ri. The average heat transfer in the cavity is
correlated as

w o+ ()]
Nu= ARe** Pr"| 1.04+B| — (12)
Pr”
where 4 and B are constants, the exponents m and n
depend on Pr, as given by equations (9) to (11),
and g is a constant of the order of 0.20 to 0.25.
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EFFET DU NOMBRE DE PRANDTL SUR LA CONVECTION THERMIQUE MIXTE
LAMINAIRE CONDUITE DANS UNE CAVITE PAR SON COUVERCLE

Résumé—On considére 'écoulement et le transfert de chaleur dans une cavité carrée pour laquelle le
mouvement du fluide est induit par le frottement résultant du mouvement de translation du couvercle et
par la force de flottement due au chauffage du plancher. Cette étude est motivée par I'application 2 la
production du verre plan dans laquelle celui-ci est poussé sur un bain de métal liquide, puis refroidi et
solidifié. Les simulations numériques sont faites pour un écoulement laminaire bidimensionnel
(100 < Re < 2200) et, pour différentes valeurs du nombre de Richardson, on étudie les effets du nombre
de Prandtl depuis les valeurs faibles (0,01 < Pr < 50) sur I"écoulement et le transfert de chaleur dans la
cavité. La température et le champ d’écoulement sont calculés et présentés pour illustrer la forte influence
du nombre de Prandtl. Les nombres de Nusselt locaux et globaux sont aussi rapportés pour différentes
valeurs de Re, Riet Pr.



1892

M. K. MoaLLemr and K. S. JanG

EINFLUSS DER PRANDTL-ZAHL AUF DEN WARMEUBERGANG BEI LAMINARER
MISCHKONVEKTION IN EINEM HOHLRAUM MIT BEWEGTER DECKFLACHE

Zusammenfassung—Die vorliegende Arbeit beschaftigt sich mit der Stromung und dem Wirmeiibergang
in einem quadratischen Hohlraum, wobei die Strémung durch die Reibungskraft als Folge der Bewegung
der oberen Deckfliche, in Verbindung mit der Auftriebskraft als Folge der Bodenheizung verursacht wird.
Die Arbeit wurde durch ihre Bedeutung fir die Produktion von Flachglas angeregt. Dort werden die
Glasscheiben iiber ein Bad mit fllissigem Metall gezogen, wihrend sie gekiihlt werden und erstarren. Aus
diesem Grund werden die numerischen Simulationsrechnungen fiir zweidimensionale laminare Strémung
(100 < Re < 2200) im Bereich kleiner bis mittlerer Prandtl-Zahlen durchgefiihrt (0,01 < Pr < 50). Der
Wirmeiibergang im Hohlraum wird fiir unterschiedliche Werte der Richardson-Zahl untersucht. Um den
starken EinfluB der Prandtl-Zahl zu verdeutlichen, werden die Temperatur- und Strémungsfelder im
Hohlraum dargestellt. Dariiberhinaus werden lokale und mittlere Nusselt-Zahlen fiir verschiedene Werte
von Re, Ri und Pr prisentiert.

BJIIMSAHUE YUCJIA TIPAHATIISI HA TEIJIONEPEHOC ITPH JTAMHUHAPHON
CMEIIAHHOWM KOHBEKIMHU B MMOJIOCTH C JIBUXYIENACS KPHINIKON

Annoraums—HMccnenyioTcs TedeHHe M TEIUIONEPEeHOC B KBaAPaTHOH MOJIOCTH, B KOTOPOH TE4YeHHE
BBI3BAHO CABHIOBOM CHIION, 00YCIOBJICHHOH IBHXEHHEM BEPXHEH KPBILIKH, H MOIBEMHOM CHIIOH 3a cyeT
HarpeBa ocHoBaHHA. HiccnenoBaHHE BHINOJHACTCS C LEIbIO HCIIONb3OBAHHR €r0 Pe3yAbTaTOB NPH NPOH-
30BOACTBE IUIOCKOTO CTEKJa, B MPOHECCE KOTOPOro OXJaXJAaeMbif M 3aTBEpACBAIOUIHA CTCKIAHHBIH
JIACT BBHITATHBAETCA M3 BaHHBI C PACIUIABJICHHBIM MeTamIoM. B cBA3M ¢ 3THM NpOBOIOMTCA YHCICHHOE
MOZEJIHPOBAHKE [UIS ABYMEPHOro jamuHapHoro TedeHHs (100 < Re < 2200) u ucciexyercs BIHAHHE
vucna [IpaHATAA OT MaNbIX A0 YMEPEHHBIX 3HaYeHHi (T.€. 0,01 < Pr < 50) Ha TeyeHHE H TEIUIONEPEHOC B
MOJIOCTH NPH pa3jIMMHbIX 3Ha4YeHusX 4ucia Puvapacona. CuiabHoe Bimsaue yncna IlpaHarns mumocT-
pUpYeTCA YHCJICHHBIMH pe3yibTaTaMH UIA noJell TeMmepaTyp M TeueHHs B nonocTH. Ilpencrapiens
TaKXKe JIOKanbHOE U cpeaHee uncaa HyccenbTa mpy pa3nnyHbIX 3HayeHHsX Re, Rin Pr.



