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Abstract-This paper considers the flow and heat transfer in a square cavity where the flow is induced by 
a shear force resulting from the motion of the upper lid combined with buoyancy force due to bottom 
heating. The work is motivated by the application in the production of plane glass where the glass sheet 
is pulled over a bath of molten metal while being cooled and solidified. The numerical simulations, 
therefore, are performed for two-dimensional laminar flow (100 < Re < 2200), and effects of small to 
moderate Prandtl numbers (i.e. 0.01 < Pr < 50) on the flow and the heat transfer in the cavity are 
investigated for different values of Richardson number. The temperature and the flow fields in the cavity 
are calculated and presented to illustrate the strong influence of Prandtl number. The local and average 

Nusselt numbers are also reported for different values of Re, Ri, and Pr. 

1. INTRODUCTION 

MIXED-CONVECTION flow and heat transfer occur fre- 

quently in engineering and natural situations. One 
important configuration is a lid-driven (or shear- 

driven) flow in a differentially heated/cooled cavity, 
which has applications in crystal growth, flow and 
heat transfer in solar ponds [l], dynamics of lakes [2], 
and thermal-hydraulics of nuclear reactors [3]. Flow 
in cavities driven by a combined shear and buoyancy 
force also arises in industrial processes such as food 
processing, and float glass production [4]. 

The lid-driven cavity flow has served over and over 
again as a standard test case for the evaluation of 
numerical solution procedures for the Navier-Stokes 
equations [5-lo]. In these works, however, the effects 
of buoyancy were not addressed since isothermal 
cavity flows were studied [5-S], or the boundary con- 
ditions represented thermally stable (i.e. stratified) 
situations [9-lo]. Flow in thermally stratified and iso- 
thermal lid-driven cavities has been the subject of 
extensive investigations at the Environmental Fluid 
Mechanics Laboratory at Stanford University (e.g. 
Koseff et al. [ 111, Koseff and Street [ 12,131 and Freitas 
and Street [ 141). Through flow visualization, velocity 
measurements, and numerical simulations, recir- 
culation flow patterns were characterized over a wide 
range of Re and Gr. These revealed that three-dimen- 
sional features, such as corner eddies near the end 
walls, and Taylor-Gortler-like longitudinal vortices, 
have significant influences on the flow for Reynolds 
numbers as low as 3200. These works emphasized the 
fluid mechanics aspects of the problem and did not 
deal with the heat transfer issues vigorously [ 11, 121. 

Torrance et al. [15] numerically investigated both 
thermally stable and unstable shear-driven flows 
(- lo6 < Gr < + 106) in cavities with depthwise 

aspect ratios of 0.5, 1 and 2. These simulations were 
performed for fixed values of Re = 100 and Pr = 1, 
with the three cavity walls at a constant temperature 
different from the temperature of the top driving lid. 
Their results indicated that the Richardson number 
(Ri = Gr/Re*) was a governing parameter of the prob- 
lem. They particularly concluded that the flow pattern 
in the cavity was influenced by the buoyancy if the 
absolute value of Ri was greater than unity. However, 
the effects of buoyancy on the heat transfer rate in the 
cavity were not characterized quantitatively. 

Mixed convection heat transfer in a lid-driven 
cavity was recently investigated by Prasad and Koseff 
[ 161. In a series of experiments which were performed 
on a cavity filled with water, the heat flux was mea- 
sured at different locations over the hot cavity floor 
for a range of Re and Gr. Their results indicated that 
the overall (i.e. area-averaged) heat transfer rate was a 
very weak function of Gr for the range of Re examined 
(2200 < Re < 12000). The data were correlated by 
Nusselt number vs Reynolds number, as well as Stan- 
ton number vs Reynolds number relations. The point 
that heat transfer is independent of buoyancy is rather 
surprising considering the range of Gr examined, i.e. 
10’ < Gr < 5 x 109. It is among the objectives of this 
work to provide an explanation for this point. 

In some mixed convection literature [ 15-171 Rich- 
ardson number has been reported to be the indicator 
of the relative importance of buoyancy induced flow. 
This observation is based on analyses and experiments 
on fluids with Prandtl numbers of order of unity, and 
cannot be treated as a universal rule. In fact, through 
a scale analysis of mixed convection flow over a ver- 
tical wall, Bejan [18] showed that the criterion for the 
transition from forced convection dominant flow to 
natural convection dominant flow was not the same 
for Pr > 1 and Pr < 1 fluids. The transition criterion 
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NOMENCLATURE 

aspect ratio, and constant for equation 

(12) 
constant for equation (12) 
gravitational acceleration [m ss’] 
Grashof number, gp(TH - T,)L3/v2 
heat transfer coefficient [W mm- * Km ‘1 
thermal conductivity [W mm ’ Km ‘1 
cavity depth and width [m] 
Nusselt number, dimensionless heat 
transfer coefficient, - a@/8 Y = hL/k 
pressure [N mm ‘1 
dimensionless pressure, p/pUf 
Prandtl number, v/a 
Reynolds number, U,L/v 
Richardson number, Gr/Re2 
temperature [K] 

(u, v) horizontal and vertical velocity 
components [m s- ‘1 

(U, V) dimensionless velocity components, 

(u, r)lU, 

ul. lid velocity [m s ‘1 
(x, y) horizontal and vertical coordinates [m] 
(X, Y) dimensionless coordinates, (x, y)/L. 

Greek symbols 

; 

thermal diffusivity [m’ s-- ‘1 
coefficient of thermal expansion 

W’l 
0 dimensionless temperature, 

(T- Tc)I(Tn - Tc) 
V kinematic viscosity [m’ s- ‘I. 

Subscripts 
C cold 
F forced convection 
H hot 
L lid 
N natural convection. 

is not yet validated for Pr << 1 fluids, due to the non- 
existence of experimental data for this range of Pr. 
Recently, however, Mohamad and Viskanta [19] 
reported on the effects of Pr on the onset of instability 
in a shallow lid-driven cavity heated from below. 
Through a linear stability analysis, they found that Pr 
influenced the conditions for the initiation of the 
mixed convection regime. 

This paper considers the flow and heat transfer in 
a square cavity where flow is induced by a shear force 
resulting from the motion of the upper lid combined 
with the buoyancy force due to bottom heating. The 
work is motivated by the application in the production 
of plane glass where a glass sheet is pulled over a bath 
of molten metal while being cooled to solidify. The 
numerical simulations, therefore, are performed for 
two-dimensional laminar flows. The effects of small 
to moderate Prandtl numbers (i.e. 0.01 < Pr < 50) on 
the flow and heat transfer in the cavity are investigated 
for different values of Reynolds and Richardson num- 
bers. The temperature and flow fields in the cavity are 
presented to illustrate the strong influence of Prandtl 
number. The effects of Pr on the variation of the heat 
transfer distribution over the cavity floor, and the 
driving lid are discussed, and correlations for the aver- 
age Nusselt number are reported. 

2. PROBLEM FORMULATION 

Fluid flow and heat transfer are modeled in a two- 
dimensional square cavity of width L in which the top 
(lid) surface moves across the cavity from left to right 
at a constant speed UL, as shown in Fig. 1. The two 

vertical walls of the cavity are insulated, and the lid 
and bottom surfaces are maintained at constant tem- 
peratures, Tc and TH, respectively, with Tc < TH. The 
flow is assumed to be laminar, and the fluid properties 
are constant except for the density in the buoyancy 
term (the Boussinesq approximation). 

The governing equations of the problem are 
expressions of conservation of mass, momentum, and 
thermal energy. Using L, U,, and (T, - T,-) as length, 
velocity, and temperature scales, the governing equa- 
tions are non-dimensionalized to yield 

au av 
Tgy+ar=o 

ug+vgL -g+L&+!g) (2) 

U = UL, V = 0, Tc 

aT 
-_=O 
al: 

(/=v=o 

aT z=o 

ll=V=O 

U = V = 0, T,, 

FIG. 1. Schematic diagram of the cavity and 
conditions. 

boundary 
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av av ap uz+vay= -z 

+~(~+~)+~o (3) 

ao ao i 

UZ2+VZ=Re~r ax2 
++g>. (4) 

The governing parameters of the problem are Reyn- 
olds, Grashof, and Prandtl numbers which are defined 
in the Nomenclature. The coupling between the heat 
transfer and the fluid flow in the cavity is through the 
buoyancy term in the y-momentum equation, equa- 
tion (3), which has Gr/Re’ = Ri as a dimensionless 
coefficient. 

The velocity and temperature boundary conditions 
are shown in Fig. 1 and have the following dimen- 
sionless forms : 

atX=OandX= 1 U=V=O and g=O 

atY=O U=O, V=O and O=l 

atY=l U=l, V=O and O=O. 

(5) 

3. METHOD OF SOLUTION 

The dimensionless governing equations are dis- 
cretized using the control volume approach with the 
power-law scheme [20] for the calculations of the 
fluxes at the faces of the control volumes. The 
SIMPLER algorithm [20] is used with the inertia 
relaxation method of ref. [3] to accelerate conver- 
gence. To resolve the large velocity and temperature 
gradients in the boundary layers near the cavity walls, 
a nonuniform grid system was used in both X- and Y- 
directions. The position of the control surfaces of the 
grid system were determined with an exponentially 
clustering scheme. A series of grid sensitivity runs 
were performed on nonuniform grids ranging from 
22 x 22 to 52 x 52, which suggested that grid inde- 
pendent results could be achieved using a 42 x 42 grid. 
The results of two nonuniform grids of 42 x 42 ana 
52x 52 for Re = 1000, Gr = 106, and Pr = 0.1 
revealed differences less than 1% in the streamlines 
and isotherms. The solution procedure is iterative and 
requires initial guesses for all the dependent variables. 
To facilitate the convergence of the solution for a 
given set of parameters, the converged solution of a 
case with smaller Ri or Re was used as the initial 
guess. Sensitivity tests have indicated that the final 
results were independent of the initial guess. 

For any set of input parameters, the solution was 
considered converged if 

IV+‘G7A--V(i,j)l < 1o_3 

Max Itf‘+‘(i, j)( 

and 

where i and i refer to the computational nodes, k is 
the iteration loop counter, $ is u, v, or T, and Nun 
and Nut are area-averaged Nusselt numbers on the 
lid and bottom surfaces, respectively. When the above 
criteria were satisfied, the residual source of mass was 
less than lo-’ for all the cases examined. The con- 
vergence of the local heat transfer rate over the bottom 
surface, as judged by the position and magnitude of 
its relative maximum, was within 0.5% when the cri- 
teria of equation (6) were satisfied. Depending on 
the input parameters, 1000 to 1800 iterations were 
required for the solution to converge, with cases with 
lower Ri or higher Pr requiring a fewer number of 
iterations. 

The numerical procedure was validated by per- 
forming simulations of isothermal flow in a square 
cavity with a driving lid for Re = 400 and 1000. The 
results of these simulations were compared with the 
calculations of Schreiber and Keller [7], and Thomp- 
son and Ferziger [8]. These comparisons revealed bet- 
ter than 95% agreement in the strength and position 
of the primary [7, 81 and secondary [7] eddies. The 
solution procedure was also validated by comparing 
the predicted heat transfer rates with the experimental 
results of Prasad and Koseff [16]. The predicted area- 
averaged heat transfer rates agreed to within 5% of 
the experimental data for Pr = 6.0, Re = 2200, and 
Gr = 10’ and 4 x 10’. 

4. RESULTS AND DISCUSSIONS 

The main objective of this investigation was to 
study the effects of Pr on the flow and heat transfer 
in a square cavity driven by a combined shear and 
buoyancy force. Forty-six numerical simulations were 
performed for a range of Pr, i.e. Pr = 0.01, 0.1, 6.0, 
7.1, and 50. With four values for Re (i.e. Re = 100, 
500, 1000, and 2200) and four values of Gr (i.e. 
Gr = 104, lo’, 106, and lo’), these simulations 
covered a range of Ri from 0.01 to 10. 

The predicted flow and temperature fields for 
Re = 1000, and Gr = lo4 (i.e. constant value of 
Ri = 0.01) and for three different values of Pr are 
shown in Fig. 2. The flow fields for all the three cases 
are essentially established by the shear induced by the 
moving lid. This may be examined by recalling the 
general features of the lid-driven cavity flow in the 
absence of buoyancy. The fluid flow in a two-dimen- 
sional lid-driven cavity is characterized by (a) a pri- 
mary recirculating eddy of the size of the cavity gen- 
erated by the lid dragging the adjacent fluid ; (b) a 
secondary eddy formed in the apex of the vertical wall 
and the bottom surface (referred to as the downstream 
secondary eddy, DSE) as a result of frictional losses 
and stagnation pressure ; (c) another secondary eddy 
(referred to as the upstream secondary eddy, USE) 
formed in the upstream lower corner due to the nega- 
tive pressure gradient generated by the primary cir- 
culating fluid as it deflects upward over the upstream 
vertical wall ; and (d) a third secondary eddy which 
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F&l 000, Ri-0.01, Pk7.1 

Level STR 
A 0.001 
8 0.000 
6 -0.006 
7 -0.016 

6 -0.029 
5 -0.039 
4 -0.049 
3 -0.069 
2 -0.069 
1 -0.080 

R&l 000, f&0.01, Pr-1 Re=lOOO, RM.01, Pr-1 

Red 000, RkO.01, PkO.1 Re=lOOO, RM.01, PkO.1 

Lwd STR 

B 0.0007 
A 0.0001 

9 0.0000 

6 -0.0063 

7 -0.0166 

6 -0.0207 
6 -0.0269 
4 -0.0400 
3 -0.0692 
2 -0.0604 
1 -O.WOO 

Lwd STR 
B 0.0007 
A 0.0001 

9 0.0000 

0 -0.0063 

7 -0.0166 

6 -0.0287 
5 -0.0269 
4 -0.0490 
3 -0.0692 
2 -0.0684 
1 -0.oaOO 

Re=lOOO, Ri=O.Ol , Pr=7.1 

71 

Level TEMP 

S 1.000 
A 0.000 

Q 0.600 

6 0.700 

7 0.600 
6 0.600 

5 0.400 

4 0.300 

3 0.200 

2 0.100 

1 0.006 

FIG. 2. Effect of Pr on the flow temperature fields in the cavity, for Re = 1000 and Gr = 104. 

.wel TEMP 

B 1.000 

A 0.000 

9 0.600 

6 0.700 

7 0.660 
6 0.600 
5 0.460 

4 0.306 

3 0.200 

2 0.100 

1 0.000 

Level TEMP 

B 1.000 

A 0.000 
9 0.800 

6 0.700 

7 0.800 

6 0.600 

6 0.400 

4 0.300 
3 0.200 

2 0.100 
1 0.000 

may develop on the vertical wall near the lid, for of the value of Pr. Moreover, the size, position, and 
Re > 1000, as the lid draws fluid from the comer into strength of the secondary eddies are almost identical 
the lid boundary layer [l l-131. All these features are for the three cases presented in this figure. These con- 
present in the flow fields shown in Fig. 2, regardless firm the established notion that for Ri << 1, the flow 



Laminar mixed convection heat transfer 1885 

in the cavity is defined by the shear action of the 
moving lid [ 151, and thus, is independent of Pr which 
defines the temperature and buoyancy variations in 
the cavity. 

The temperature distributions in the cavity, shown 
on the right side of Fig. 2, exhibit strong dependence 
on Pr. These indicate that the thermal boundary layers 
over the bottom and the lid surfaces thicken as Pr is 
reduced. The large isothermal region which extends 
over most of the cavity for Pr = 7.1, shrinks with 
decreasing Pr, and disappears for Pr < 0.1. The 
strong dependence of the temperature distribution on 
Pr does not reflect on the flow pattern in the cavity 
which again demonstrates the insignificant con- 
tribution of buoyancy in the flow development for 
Ri cc 1. 

Figure 3 presents the flow and temperature fields 
calculated for Re = 500, Gr = 10’ (i.e. constant 
value of Ri = 0.4), and for Pr = 7.1, 1.0, and 0.1. The 
flow fields of this figure indicate to a more significant 
contribution of buoyancy in defining the flow pattern 
in the cavity, as compared with the flow fields of Fig. 
2. The upstream secondary eddies have vanished, and 
the downstream secondary eddies have changed size. 
On the upstream wall, buoyancy assists the core flow 
to make a sharp turn, and thus, the secondary eddy at 
the upstream corner disappears. On the downstream 
wall, however, buoyancy is opposing the core flow 
and causes the downcoming boundary layer to detach 
from the wall at a larger Y, resulting in a larger eddy. 
The effects of Pr on the temperature distribution in 
the cavity in this figure are similar to those of Fig. 2, 
i.e. large isothermal core region for large Pr, and very 
thick thermal boundary layers for small Pr. For the 
cases of Fig. 3, however, a change in Pr results in a 
change in the flow pattern in the cavity, confirming 
the important role of buoyancy in defining the flow 
field in the cavity. For large values of Pr, since the 
core is isothermal, the influence of buoyancy is limited 
to the boundary layers, and appears in the form of 
reduction in the size or position of the secondary 
eddies. For small values of Pr, the effects of buoyancy 
manifest in the boundary layers, and also in the core 
of the cavity. Therefore, a reduction in Pr will result 
in a stronger primary eddy while affecting the sizes 
and positions of the secondary eddies, as well. 

The flow and temperature fields in the cavity for 
Re = 1000 and Gr = lo6 are presented in Fig. 4. This 
figure shows that for Ri = 1.0 the fluid flow in the 
cavity is established by a relatively balanced inter- 
action of the two driving mechanisms involved, with 
a strong dependence on Pr. For Pr equal to unity, the 
balance of the shear and buoyancy effects is mani- 
fested in the formation of two eddies of almost equal 
size. The upper eddy is driven by the moving lid, and 
encapsulates an isothermal core. This is in fact the 
primary eddy which is deformed due to the opposing 
action of the buoyancy. The eddy in the lower half of 
the cavity is driven by buoyancy, and is the enlarged 
form of the DSE. For Pr greater than unity, the 

heat transfer is mostly via convection in the boundary 
layers, the core of the cavity is isothermal, and the 
buoyancy effects are only significant near the cavity 
wall. And these together result in the enlargement of 
the DSE, and the elimination of the USE. For 
Pr << 1 .O, the heat transfer in the cavity is mostly due 
to conduction, resulting in a rather gradual variation 
of temperature in the cavity, and therefore, a small 
buoyancy field. In the bottom flow field in Fig. 4, the 
presence of USE and upper secondary eddies in the 
cavity is the result of weak buoyancy or, in other 
words, strong shear-induced recirculation. 

The flow and temperature fields for Ri = 4 
(Re = 500 and Gr = 106) illustrate similar effects and 
interactions, as shown in Fig. 5. Comparing the flow 
fields in Figs. 4 and 5 shows the influence of a change 
in shear at constant Gr for different values of Pr. In 
the top rows (Pr = 7.1), a decrease in Re results in 
significant change in the flow structure, i.e. the 
enlargement of the DSE. Whereas, for Pr = 0.1, a 
decrease in Re causes a change in the strength of the 
primary eddy, with little effect on the secondary eddies 
or the temperature field. The influence of a change in 
buoyancy on flow and heat transfer in the cavity at 
constant lid shear may be revealed in a comparison 
of Figs. 3 and 5. For large values of the Prandtl 
number, i.e. Pr 2 1.0, an increase in Gr results in 
significant change in the secondary eddies, as well as 
the primary eddy. This is due to the fact that for this 
range of Pr, the flow in the cavity is boundary layer 
type. For Pr < 1.0, however, the cavity flow is more 
of a core flow type, and an increase in buoyancy results 
in a stronger primary eddy and this manifests in the 
formation of an upper secondary eddy on the vertical 
wall near the lid, and the resurgence of the USE. 

The variations of local Nusselt number over the lid 
and bottom surfaces for different values of Re, Gr, 
and Pr are presented in Figs. 6-10. Over the cold lid 
surface, the heat transfer rate generally drops in the 
direction of the lid motion due to the formation and 
growth of the boundary layer over this surface. Over 
the bottom hot surface, however, the variation of the 
local heat transfer rates is more complex, and exhibits 
local maxima and minima which are defined by the 
action of the primary and secondary eddies on this 
surface. The local NuH has a relative maximum at a 
point that cold fluid impinges on the cavity floor. The 
drop in the heat transfer subsequent to an impinge- 
ment point is due to the formation and growth of 
boundary layers over the cavity floor. The points of 
relative minimum NuH correspond to the points of 
detachment of these boundary layers from the cavity 
floor. These may be examined by referring to the cor- 
responding flow fields presented in Figs. 2-5. 

In Figs. 6 and 7, for which Ri < 1, the local and 
area-averaged heat transfer rates over the lid as well 
as the floor surfaces increase with an increase in Pr. This 
trend is consistent over both surfaces since neither the 
dashed lines nor the solid lines cross each other. For 
these cases, it may be concluded that the heat transfer 
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R6=500, Ri-0.4, Pe7.1 

AedjOO, Rk0.4, Pr=l 

Re&OO, fGO.4, PrPO.1 

LWsl STR 
A o.OOo7 
9 o.moo 

6 -0.0083 
7 -0.0186 
6 -0.0267 

5 -0.0389 

4 -0.0490 

3 -0.06Q2 

2 -0.06Q4 
1 -o.OwJ 

Level STR 
ii 0.0030 

9 O.OQfO 

8 0.0000 

7 -0.0039 

6 -0.0127 

5 -0.0304 

4 -0.0461 

3 -0.0659 

2 -0.0636 

1 -0.1013 

Level STR 

A O.Oof5 
0 0.0000 

8 -0.0020 

7 -0.0196 

6 -0.0371 

5 -0.0547 

4 -0.0722 

3 -0.0898 

2 -0. f 073 

1 -0.1249 

Re=500, Rb0.4, Pb7.1 

Re=500, Rir0.4, Pr=l 

LWel TEMP 

B 1 BOO 

A o.QOO 

9 0.800 

6 0.700 

7 0.600 

6 OSQO 

6 0.400 

4 0.300 

3 0.200 

2 O.?OQ 

1 0.000 

t.emI TEMP 
B 1 .OOo 

A 0.900 
e 0.800 

a 0.700 

7 0.600 
6 0.500 

5 0.400 

4 0.300 

3 0.200 

2 0.100 

1 0.000 

Re=500, RidI.4, PraO.1 

FIG. 3. Effect of Pr on the flow and temperature fields in the cavity, for Re = 500 and Gr = IO’. 

Lwel TEMP 

S 1.QOO 

A WOO 

9 o.wO 

B 0.700 

7 0.600 
6 0.600 

5 0.400 

4 0.300 

3 0.200 

2 0.100 

1 0.000 

in the cavity is defined by the shear flow that dictates as the positions of maximum and minimum heat 
the primary recirculation in the cavity, since the form transfer rates do not noticeably change with a change 
of variation of Nut along the lid does not change with in Pr. The small change in the local variation of Nut., 
Pr. The effect of buoyancy on the local heat transfer with Pr is due to the weak influence of buoyancy on 
rate from the cavity goor is recognized to be minimal, the secondary eddies. 
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F&l 000, Ri=l , Pe7.1 

Re=lOOO, Rid , Pr=l 

Re=lOOO, RI=1 , PkO.1 

Loud STR 
B 0.006 

A 0.006 

9 0.000 

6 -0.010 
7 -0.020 
6 -0.031 
5 -0.041 
4 -0.052 

3 -0.062 
2 -0.073 
1 -0.063 

Level STR 

0 0.0435 
A 0.0312 
9 0.0160 
6 0.0067 
7 -0.0056 
6 -0.0176 
5 -0.0302 
4 -0.0425 

3 -0.W 
2 -0.0671 
1 -0.0764 

Level sm 
B 0.001 
A 0.000 
9 -0.011 
6 -0.032 
7 -0.063 
6 -0.073 
5 -0.064 
4 -0.115 
3 -0.136 

2 -0.156 
1 -0.177 

Red 000, Rid, Pr-7.1 

Level TEMP 
B 1.000 
A 0.606 
9 0.660 
6 0.700 
7 0.600 
6 0.500 
5 0.400 
4 0300 
3 0.200 

2 0.100 
1 0.000 

Re=lOOO, Ri=l , Pr=l 

R-1 000. Ri-1, PbO.1 

Level TEMP 
B 1.060 
A 0.600 
6 0.600 
6 0.700 
7 0.606 
6 0.W 
5 0.400 
4 0.306 

3 0.206 
2 0.106 
1 0.006 

B 1.060 
A 0.600 
9 0.606 
6 0.700 
7 0.606 
6 0.600 
5 0.406 
4 0.300 
3 0.200 

2 0.100 
1 0.006 

FIG. 4. Effect of Pr on the flow and temperature fields in the cavity, for Re = 1000 and Gr = 106. 

In Figs. 8 and 9 (Ri > l), the variations of Nuu and correspond to the points of cold flow impingement on 
Nut illustrate stronger dependence on Pr, indicating the floor, and points of boundary layer detachment 
a more significant contribution of buoyancy to from the floor, respectively. In these figures, the effects 
heat transfer and fluid flow in the cavity. For Nuu of Pr on Nu, and Nut may be noted to be both 
variations, the points of maxima and minima again quantitative (i.e. mostly higher heat transfer rates for 
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Re=!iOO, Rid, PM.1 

RedOO, Rk4, Pr-1 

Re500, Ri-4, PhO.1 

lmd STR 

A 0.0477 

S 0.0304 

8 0.0291 

7 0.0199 

6 0.0106 

5 0.0013 

4 -0.0080 

3 -0.0266 

2 -O.O4!ii 

1 -0.0637 

l.md STR 
B 0.099 

A 0.057 

0 0.037 

8 0.016 
7 0.001 

6 0.000 

5 -0.004 

4 -0.025 

3 -0.046 

2 -0.066 

1 -0.087 

Lwal STR 
S 0.0100 

8 0.0004 

7 0.0000 

6 -0.0064 
5 -0.t we 

4 -0.1725 

3 -0.2261 

2 -0.2796 
1 -0.3332 

F&500, Ri54, Pk7.1 

Re=500, Ri=4, Pr=l 

Loud TEW 

0 1.000 

A 0900 

S 0.000 
8 0.700 

7 0.600 

6 0.500 

5 0.400 

4 0.300 

3 0.200 

2 0.100 

1 0.000 

Level TEMP 
B 1.000 
A 0900 

0 0.800 
B 0.700 

7 0.800 

6 0.600 

5 0.400 

4 0.300 

3 0.200 
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FIG. 5. Effect of Pr on the flow and temperature fields in the cavity, for Re = 500 and Gr = 10’. 

larger values of Pr) and qualitative (i.e. changes in the effects are felt by both the primary and the secondary 
positions of maximum and minimum Nuu with a eddies, particularly for cases with Pr 2 1 .O. 
change in Pr). In either sense, however, the influence The inftuence of Pr on the variation of the area- 
is more pronounced for larger Pr. This confirms the averaged heat transfer rate with Ri, for different values 
earlier observations that for Ri 3 1.0 the buoyancy of Re, is presented in Fig. 10. The experimentat results 



Laminar mixed convection heat transfer 1889 

0.00 0.25 0.50 0.75 1.00 
X 

FIG. 6. Variations of the local Nu over the cavity floor (solid FIG. 9. Variations of the local Nu over the cavity floor 
lines), and the lid (dash lines), for Re = 1000 and Gr = 10’ (solid lines), and the lid (dash lines), Re = 500 and Gr = lo6 

(Ri = 0.01). (Ri = 4.0). 
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FIG. 7. Variations of the local Nu over the cavity floor 
(solid lines), and the lid (dash lines), Re = 500 and Gr = lo5 

(Ri = 0.4). 
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FIG. 8. Variations of the local Nu over the cavity floor (solid 
lines), and the lid (dash lines), Re = loo0 and Gr = lo6 

(Ri = 1.0). 

of Prasad and Koseff [16], for water (Pr = 6.0) at 
Re = 2200 are also shown in the figure, which com- 
pare well with the results of simulations performed 
for the same set of parameters. The figure indicates a 
rapid drop of convective heat transfer in the cavity 
with a decrease in Pr. This drop which is also a func- - 
tion of Re brings the Nu to 1.03 for Pr = 0.01 and 

1 
0.01 0.1 Ri 1 10 

FIG. 10. Effect of Pr on the variation of averaged Nu with 
Ri. 

Re = 500, only 3% above the conduction limit of 
unity. The results also illustrate that up to a minimum 
level of buoyancy, the heat transfer rate in the cavity 
is essentially via forced convection and independent 
of Ri. The departure from the forced convection heat 
transfer mechanism to a mixed convection one, for - 
which Nu = f (Re, Rl), is noted to be a function of Pr. 

Prasad and Koseff [ 161 have correlated their exper- 
imental results as 

- 
Nu cc A’.’ ~eO.‘8 Ri-0.02 

(7) 

where A is the depthwise aspect-ratio of the cavity. 
This correlation should be quite useful for design 
applications, as it has a simple form and spans four 
decades of Ri (i.e. 0.1 < Ri < 1000). It does not, 
however, provide any clues to the interaction of the 
two heat transfer mechanisms involved. Moreover, 
the experimental conditions of ref. [16] correspond to 
2200 < Re < 12000 and 10’ < Gr < 5 x lo’, which 
include laminar and turbulent regimes for both the 
forced and natural convection mechanisms. The cast- 
ing of the data for the two flow regimes into one 
correlation had resulted in a very weak dependence of 
the heat transfer rate on buoyancy, which may be 
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justified for turbulent flows but is an anomaly for 
laminar flows. 

It has now become a common practice in mixed 
convection literature [Zl] to correlate heat transfer 
results by an expression of the form 

;\;i;” = Nu”+Nu” F- N (8) 

where subscripts F and N refer to pure forced and 
natural convection, respectively. The value of the 
exponent n and the sign between the two terms on the 
right-hand side of the equation depend on the flow 
configuration and geometry. The correlations for the ____- 
average Nusselt numbers Nup and NuN are determined 
with clues from the existing correlations for similar 
geometries. Equation (8) yields the correct form of 
dependence on the governing parameters of the prob- 
lem in the two limiting cases (i.e. forced convection as 
Gr -+ 0, and natural convection as Re -+ 0), a charac- 
teristic that equation (7) does not have. 

To identify a correct form for the heat transfer 
correlation, an expression similar to equation (8) is 
sought. The Nusselt number is first scaled by Re’.‘, 
as suggested by correlations for laminar forced con- 
vective flow over flat plates [22]. Figure I1 indicates 
that this scaling is appropriate as curves for different 
values of Re collapse on one another, for the entire 
range of Ri examined. The heat transfer results for 
Pr = 0.01 and Re = 500 do not follow a trend similar 
to the other curves in the figure, and will not be con- 
sidered for finding the correlation. This is justified by 
the fact that the heat transfer for this set of conditions 
is mostly via conduction (i.e. Nu = 1.03). In finding 
the form of dependence of Nt+ on Pr, two ranges are 
considered, namely, Pr < 1 and Pr 2 I. Least-squares 
fits of the data at Ri = 0.01, which may be regarded 
as pure forced convection, provide the following 
relations : 

(9) 

These are in agreement with the results for heat trans- 
fer over a flat plate which are proportional to Pr”‘l 
and Pr’/3 for Pr < 1 and Pr > 1, respectively [22]. 

To find the correct form of variation of NU with Ri 
and Pr for the mixed and natural convection regimes, 
it is first noted that Ri is not the correct scaling par- 
ameter for both Pr > 1 and Pr < 1 conditions, as the 
curves for Pr < 1 in Fig. 11 have knees at around Ri 
equal to unity, while other curves in the figure seem 
to have departures from pure forced convection mech- 
anism at values of Ri greater than unity. This is in 
agreement with the scaling analysis of Bejan [18] for 
mixed convection heat transfer over a vertical wall, 
which suggests use of different scaling criteria for tran- 
sition from forced convection to natural convection 
regimes. These criteria are 

for Pr < 1 fluids 

< 0( 1) forced convection 
$3114 

> O( I) natural convection (10) 

and for Pr > 1 fluids 

Ri ~4 < 0( 1) forced convection 

(6) i Pr “3 > 0( 1) natural convection ’ (11) 

- 
Figure 12 presents the variation of NU scaled with 
Re”,’ x Pr” against the scaling parameters of equations 
(IO) and (1 l), depending on the range of Pr. The 
exponent M also depends on the range of Pr as given 
by equation (9). This figure indicates the proper 
scaling of both the abscissa and ordinate, and shows 
the correct forced convection and natural convection 
limits for both ranges of Pr. The Nu variations in the 
natural convection limit seem to be proportional to 
the abscissa parameter raised to the 0.20 power, rather 
than the 114th power suggested by criteria of equa- 
tions (10) and (11). From this figure it may be con- 
cluded that the overall effect of buoyancy in the cavity 
is to assist the heat transfer, and no opposing effects 

“.“b.*..1”. Ri 1 

FIG. 11. Variation of averaged i”iu scaled by Re”-* with Ri FIG. 12. Variation of heat transfer in the cavity as a function 
for different values of Pr. of Re, Ri, and Pr (symbols are the same as those of Fig. 11). 
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appears to be present for the range of parameters 
examined. 

8. 

5. CONCLUSIONS 

The flow and heat transfer is investigated in a bot- 9’ 
tom heated lid-driven square cavity flow. The effects 
of Prandtl number on the flow structure and heat 
transfer in the cavity are studied for laminar ranges of 10. 
Re and Gr. The inibrence of buoyancy on the flow 
and heat transfer in the cavity is found to be more l1 

’ pronounced for higher values of Pr, if Re and Gr 
are kept constant. The natural convection effects are 
always assisting the forced convection heat transfer, 
and the extent of the contribution is a function of Pr 

and Ri. The average heat transfer in the cavity is 12. 
correlated as 

- 
Nu = A Re’,’ Pr” 

where A and B are constants, the exponents m and n t4. 
depend on Pr, as given by equations (9) to (1 l), 
and q is a constant of the order of 0.20 to 0.25. 
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EFFET DU NOMBRE DE PRANDTL SUR LA CONVECTION THERMIQUE MIXTE 
LAMINAIRE CONDUITE DANS UNE CAVITE PAR SON COUVERCLE 

R&arm&On considere l’ecoulement et le transfert de chaleur dans une cavite car&e pour laquelle le 
mouvement du fluide est induit par le frottement resultant du mouvement de translation du couvercle et 
par la force de flottemeut due au chauffage du plancher. Cette etude est motivee par l’application a la 
production du verre plan dans laquelle celui-ci est pousse sur un bain de metal liquide, puis refroidi et 
solidifii. Les simulations numeriques sont faites pour un kcoulement laminaire bidimensionnel 
(100 Q Re < 2200) et, pour differentes valeurs du nombre de Richardson, on Btudie les effets du nombre 
de Prandtl depuis les valeurs faibles (0,Ol < Pr < 50) sur l’ecoulement et le transfert de chaleur dans la 
cavite. La temperature et le champ d’kcoulement sont calculbs et prisentes pour illustrer la forte influence 
du nombre de Prandtl. Les nombres de Nusselt locaux et globaux sont aussi rapportcs pour diffkntes 

valeurs de Re, Ri et Pr. 
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EINFLUSS DER PRANDTL-ZAHL AUF DEN WARMEUBERGANG BE1 LAMINARER 
MISCHKONVEKTION IN EINEM HOHLRAUM MIT BEWEGTER DECKFLACHE 

Zusammenfassung-Die vorliegende Arbeit beschaftigt sich mit der Stromung und dem Wirmeiibergang 
in einem quadratischen Hohlraum, wobei die Stromung durch die Reibungskraft als Folge der Bewegung 
der oberen Deck&he, in Verbindung mit der Auftriebskraft als Folge der Bodenheizung verursacht wird. 
Die Arbeit wurde durch ihre Bedeutung fur die Produktion von Flachglas angeregt. Dort werden die 
Glasscheiben iiber ein Bad mit fliissigem Metal1 gezogen, wahrend sie gekiihlt werden und erstarren. Aus 
diesem Grund werden die numerischen Simulationsrechnungen fur zweidimensionale laminare Stromung 
(100 < Re < 2200) im Bereich kleiner bis mittlerer Prandtl-Zahlen durchgefiihrt (0,Ol < Pr < 50). Der 
Warmetibergang im Hohlraum wird fur unterschiedliche Werte der Richardson-Zahl untersucht. Urn den 
starken EinfluB der Prandtl-Zahl zu verdeutlichen, werden die Temperatur- und Striimungsfelder im 
Hohlraum dargestellt. Dariiberhinaus werden lokale und mittlere Nusselt-Zahlen fiir verschiedene Werte 

von Re, Ri und Pr prlsentiert. 

BJIMRHME 4kiCJIA I-IPAHATJDI HA TEITJIOI-IEPEHOC I-IPM JIAMMHAPHOR 
CMEBIAHHOB KOHBEKHHW B I-IOJIOCTM C flBMmYILIE$iCX KPbIIIIKOR 

AlrsOTaIQSI--~CCneAyIOoTcn TeqeHHe a TennonepeHoc B ksanparnoii no.noc~H, B KOTO~O~~ Tevewie 

Bb13BaHO CABHrOBOfi CE!nOir,o6ycnoBJIeHHoi-i ABHXCCHHCM BepXHeii KPblUlKW,H IlOA~MHOZi CHnOii 3a CWT 

HarpeBa OCHOBaHHR.&CneAOBaHHeBblnOAHIleTCIlC UenbEO HCIIOnb30BWiHRerO pe3ynbTaTOB llpH ITpOW 

3onoACTBe nnocKor0 crercna, B npouecce ~o~oporo oxnawaeh4blR a 3aTsepAeBahwvG creKnnHHb&i 

Juicr BbITRI'HBaeTCI 83 BaHHbI C paCMaBJIeHHbIM MeTaJlJlOM. B CBI13H C 3THM lIpOBOAHTC5l YHCneHHOe 

Monennpoeatine ana neyh%epHoro naMHHapHoro TeYeHHn (100 Q Re Q 2200) H HccneAyeTcn BnHRHHe 
9ncna Hpasnrna OT ~anblx A0 yMepenHbtx 3HaqeHiifi (T.e. 0,Ol c Pr < 50) na Tenernie ti rennonepenoc B 

non0cTa npH pa3nsiqHblx 3HaqeHHnx 9ticna PziqapAcoHa.CanbHoe nnHnwe wicna IlpaHnTnr munocr- 
pepyercr wcneHHblMu pe3ynbTaTardH Ann nonefi rehnreparyp H renetnin B nonocrn. Hpencrasnenbr 

TaKxe AOKiUlbHOeHC~Ali~'lHCnaHyCCenbTaIIpHpa3nFi~HbIx3HaYeHHffX Re,RiH Pr. 


